

Transformation de fruits et légumes

Principes de base du traitement des aliments et des légumes pour les spécialistes de CIGAR BOX

Objectifs d'apprentissage

Connaissance de 6 catégories de F & L transformés. Capable d'expliquer les étapes de production de base dans le traitement des F & L. Capable d'identifier les goulots d'étranglement dans le processus de production. Capable d'identifier les principaux indicateurs de coûts et les écarts par rapport aux points de repère de l'industrie.

Table de matières

1.	Con	texte c	de la production et de la transformation	6
	1.1.		ents types de fruits et légumes	
	1.2.	Matu	rité ou préparation à la récolte	6
	1.3.		ns post-récolte	
	1.4.	Conse	ervation des aliments	8
2.	Ciga	r Box e	et analyse des risques	13
	2.1.	P. Prix	de vente	14
	2.2.	VC4. 0	Coût de livraison variable	15
	2.3.	Coûts	variables de production	15
	2.3.	1.	VC1	15
	2.3.	2.	VC2	16
	2.3.	3.	VC3	16
	2.4.	Coûts	Fixes	16
	2.5.	Quant	tité vendue	16
	2.6.	Quant	tité produite	17
3.	Info	rmatio	n sur la catégorie de produit	18
	3.1.	CONC	ENTRES ET PUREES DE JUS DE FRUITS	18
	3.1.	1.	Produit	18
	3.1.	2.	Matière première	18
	3.1.	3.	Ratio de traitement	19
	3.1.	4.	Processus de production	19
	3.1.	5.	Emballage	20
	3.1.	6.	Description de la qualité	20
	3.1.	7.	Problèmes de qualité	
	3.1.	8.	Problèmes de marketing	20
	3.1.	9.	Repères de Cigar Box. Jus De Pomme Concentré	21
	3.1.	10.	Repères de Cigar Box. Purée de mangue	22
	3.1.		Principaux risques liés à un investissement	
	3.2.	Jus, N	ectars, Boissons	23
	3.2.	1.	Produit	23

3.2.2.	Matière première	
3.2.3.	Processus de production	23
3.2.4.	Emballage	24
3.2.5.	Description de la qualité	24
3.2.6.	Problèmes de qualité	24
3.2.7.	Problèmes de marketing	
3.2.8.	Repères de Cigar Box. Jus de fruits concentré	25
3.2.9.	Principaux risques liés à l'investissement	
3.3. CONS	ERVES, CONFITURES, SIROPS ET COMPOTES	
3.3.1.	Produit	
3.3.2.	Matière première	
3.3.3.	Processus de production	
3.3.4.	Emballage	
3.3.5.	Description de la qualité	
3.3.6.	Problèmes de qualité	
3.3.7.	Problèmes de marketing	
3.3.8.	Repères de Cigar Box. Conserve de noyer vert bio	
•	mes en conserve	
3.4.1.	Produit	
3.4.2.	Matière première	
3.4.3.	Processus de production	
3.4.4.	Emballage	
3.4.5.	Description de la qualité	
3.4.6.	Problèmes de qualité	
3.4.7.	Problèmes de marketing	
3.4.8.	Repères de Cigar Box. Petits pois en conserve.	
3.4.9.	Principaux risques liés à l'investissement	
	et légumes surgelés	
3.5.1.	Produit	
3.5.2.	Matière première	
3.5.3.	Processus de production	
3.5.4.	Emballage	
3.5.5.	Description de la qualité	
3.5.6.	Problèmes de qualité	
3.5.7.	Problèmes de marketing	
3.5.8.	Les repères de Cigar Box. Mure Bio Congelé (IQF):	
3.5.9.	Les repères de Cigar Box. Mélanges de maïs et de pois doux congelés :	34
1:ata da tabla		
Liste de table	aux érence entre les fruits et les légumes	_
	e des principes de conservation	
	rçu des systèmes de traitement et des investissements nécessaires	
•	rçu des catégories de produits dans le secteur des fruits et légumes os de transformation de certains fruits par catégorie de produit	
	os de transformation de certains fruits par categorie de produitortance de la technologie pour la rentibilité	
	ge % et niveaux de risquesge % et niveaux de risques	
	ge % et niveaux de risquesul du prix de partité	
	ères de rendement	
rapicau 10. CB	1 Jus de pomme concentrée	∠⊥

Tableau 11. CB1. Purée de mangue	22
Tableau 12. CB1. Jus de fruits	25
Tableau 13. CB1. Noyer Vert Bio	28
Tableau 14. CB1. Petit pois en conserve	30
Tableau 15. Mure Bio Congelé (IQF)	33
Tableau 16. Mélanges de maïs et de pois doux congelés	34
Liste de diagramme de flux	
Diagramme de flux 1. Concentrés et purées de jus de fruits	20
Diagramme de flux 2. Jus, nectars, boissons	24
Diagramme de flux 3. Conserves, confitures et sirops	27
Diagramme de flux 4. Conserves de légumes	29
Diagramme de flux 5. Fruits et légumes surgelés	31

ACRONYMES USUELS / DÉFINITIONS

Abréviation	Signification	Remarques
AJC	Concentré de Jus de pomme	HS-Code 2009.70.0020
Autoclave	Autoclave	Equipement pour pasteuriser ou stériliser des produits à la vapeur sous haute pression.
BRC	Consortium Britannique de Vente en Détails	En 1998, le BRC, répondant aux besoins de l'industrie, a élaboré et introduit la norme technique sur les aliments BRC à utiliser pour évaluer les fabricants de produits alimentaires de marque propre. Voir www.brc.org.uk/
Bx; Brix	Indice de rupture	Pourcentage de solides solubles dans une solution (par exemple, pourcentage de sucre dans le jus de mangue); Le Brix est mesuré avec un réfractomètre. Dans la transformation F & L, le terme «Brix» désigne généralement la teneur en sucre.
CA / ULO	Atmosphère Contrôlée Ultra faible teneur en oxygène	Après la récolte, de nombreux fruits et légumes sont conservés pendant de longues périodes dans des conditions d'AC ou d'OLO. Cela permet aux produits d'être fournis tout au long de l'année, tout en maintenant la qualité. Grâce à l'application CA / ULO, les processus physiologiques dans le produit stocké sont retardés / inhibés, ce qui prolonge la durée de conservation. Les conditions de conservation requises sont réalisées en créant une atmosphère avec une augmentation de CO2 (dioxyde de carbone), une concentration réduite en O2 (oxygène) et une température / humidité centrée sur le produit. En stockant vos produits dans cette atmosphère, vous pouvez contrôler le processus de maturation. Voir www.besseling-group.com/caulo.htm
CIP	Nettoyage en place	Le CIP est une technique de technologie de processus utilisée pour nettoyer les pièces d'une usine sans qu'il soit nécessaire de les démonter. Cette technique est couramment utilisée dans l'industrie de la transformation des aliments.

Abréviation	Signification	Remarques
EUREPGAP		EurepGAP est un organisme du secteur privé qui établit des
		normes volontaires pour la certification des produits agricoles
		dans le monde entier. Voir <u>www.eurepgap.org</u>
HACCPS	Analyse des risques	HACCPS est une approche préventive systématique de la
	et des points de	sécurité alimentaire et de la sécurité pharmaceutique qui
	contrôle critiques	aborde les risques physiques, chimiques et biologiques en
		tant que moyen de prévention plutôt que l'inspection du
		produit fini. Le système HACCP est utilisé dans l'industrie
		alimentaire pour identifier les dangers potentiels pour la sécurité des aliments, afin que des actions clés, appelées
		points de contrôle critiques (PCC), puissent être prises pour
		réduire ou éliminer le risque que les dangers se matérialisent.
		Le système est utilisé à toutes les étapes de la production
		alimentaire et des processus de préparation, y compris
		l'emballage, la distribution.
Remplissage à	Méthode de	Terme utilisé dans l'industrie alimentaire lorsque les
chaud	remplissage à haute	conteneurs sont remplis à chaud, à la température du
	température.	procédé, afin de garantir la stérilité du conteneur et du
		produit pendant et après le processus de remplissage. Voir:
		http://www.barry-wehmiller-
		<pre>company.com/content/menus/bwb/Glossary.aspx</pre>
Code SH	le code du système	Voir l'annexe C, Informations statistiques sur les fruits et
	harmonisé	légumes et http://www.vassl.com/data/01-24.txt
IQF	Surgelé	Les fruits, les baies et les morceaux de légumes sont
	individuellement	transportés par une ceinture à moins 50-60oC; en quelques
		minutes, la température à l'intérieur du produit chute à
100 22000		moins 20 ° C.
ISO 22000		ISO 22000 est une norme développée par l'ISO sur la sécurité
ISO 9001		alimentaire. Il intègre ISO 9001 et HACCPS. ISO 9000 est une famille de normes pour les systèmes de
130 9001		management de la qualité. ISO 9000 est mis à jour par
		l'Organisation internationale de normalisation et est
		administré par des organismes d'accréditation et de
		certification.
SIG		La marque du carton aseptique vendu pour les machines
		d'emballage CombiBloc (jus).
Tetrapak		La marque du carton aseptique vendu pour les machines
	_	d'emballage Tetrapak / Alfa-Laval (jus).

ACRONYMES CIGAR BOX / DÉFINITIONS

Abréviation	Signification	Remarques
СВ	Cigar Box	Un système de calcul du prix de revient basé sur une feuille de
	e.ga. zex	calcul avec 5 modules.
CB1	Analyse du prix de revient	Prix de revient et bénéfice pour un SKU par an.
CB2	Analyse de portefeuille	Prix de revient et profit pour l'ensemble du portefeuille en un
	,, p	an.
CB3	Surveillance	Prix de revient de tous les SKU tous les jours de production.
	opérationnelle	
CB4	Analyse d'investissement	Analyse d'un investissement sur une période de 6 ans.
CB5	Analyse de la chaîne de	Prix de revient et profit pour toute une chaîne de valeur en un
	valeur	an.
CB6	Analyse de satisfaction	Système de mesure basé sur la qualité, le prix, le service et la
	client	réputation.
FC	Coûts fixes	Coût non influencé par le volume produit
FC1	Coût fixe 1	Coût d'amortissement
FC2	Coût fixe 2	Coût de l'intérêt
FC3	Coût fixe 3	Frais généraux
FC4	Coût fixe 4	Coût des ventes et du marketing
ETP	Équivalent temps plein	2 personnes travaillant 50% du temps = 1 ETP
Global Facts	Propriétaire de Cigar Box	Pour plus d'informations, visitez www.globalfact.nl
Р	Prix	1. 1. Prix de vente ou prix d'achat
		2. 2. Le paramètre CB6 qui mesure la satisfaction des clients
		à l'égard du prix d'achat d'un produit.
P(FOB),	Prix, Incoterm	http://www.iccwbo.org/incoterms/id3040/index.html
P(DAF),	,	
C&F, DDU, DDP		
P(EXW),	Prix Ex Works	Prix de vente utilisé dans les calculs CB1
q	Quantité	
Q	Qualité	Paramètre CB6 qui mesure la satisfaction des clients avec la
		qualité perçue d'un produit.
PR	Ratio de traitement	Kilo d'intrant requis pour 1 kg de rendement
VC	Coûts Variables	Coûts qui fluctuent avec le volume du produit
VC1	Coûts Variables 1	Coût des matières premières et des ingrédients
VC2	Coûts Variables 2	Coût de la transformation de la matière première en un
		produit fini
VC3	Coûts Variables 3	Coût des emballages
VC4	Coûts Variables 4	Frais de livraison
R	Réputation	Paramètre CB6 qui mesure la satisfaction des clients à l'égard
		de la réputation perçue de la marque et les promesses faites
		par les fabricants d'un produit.
RM	Matière première	Pas une abréviation officielle, mais juste dans la Cigar Box
S	Service	Le paramètre CB6 mesure la satisfaction des clients à l'égard
		du niveau de service perçu avec lequel le produit est livré.
SKU	Unité de conservation	Tous les articles vendus. Par exemple. Les confitures de pêches
		en 200 ml et 500 ml sont deux références différentes, bien que
		la confiture soit identique.

1. Contexte de la production et de la transformation

1.1. DIFFERENTS TYPES DE FRUITS ET LEGUMES

Le terme « fruits et légumes » couvre tous les produits horticoles comestibles. Les fruits et les légumes sont très adaptables aux conditions climatiques et du sol, mais les types de produits et les rendements varieront considérablement en raison de ces conditions. En raison de son caractère périssable, la localisation géographique des superficies plantées par rapport aux marchés, aux unités de transformation et aux consommateurs est plus importante que pour d'autres cultures.

Maintenir la qualité des fruits et légumes après la récolte est l'essence même de la transformation.

Tableau 1. Différence entre les fruits et les légumes

Botanic cycle	Carrier	Kernel	el Biological Common name name		Examples
perennial	tree	seed	Seed fruit	fruit	apple, pear, cashew
perennial	tree	stone	Stone fruit	fruit	mango, peach, cherry
perennial	bush	seed	Seed fruit	berry	strawberry, raspberry
annual	fruit	seed	Vegetable	fruit	tomato, squash
annual	flower		Vegetable	vegetable	broccoli
annual	leaf		Vegetable	vegetable	cabbage, spinach
annual	stem		Vegetable		onion
annual	root		Vegetable		carrot, potato
annual	leaf		Herbs	herbs	parsley, dill, basil
perennial	leaf		Herbs	herbs	rosemary

1.2. MATURITE OU PREPARATION A LA RECOLTE

La maturité, ou l'état de préparation à la récolte, dépend de la maturité physiologique et commerciale.

Non mûr → Mûr → A point → Trop mûr

Step 1 Step 2 Step 3

Sur la plante Sur/hors de la plante Tombé de la plante

- La maturité physiologique est atteinte sur la plante ou sur l'arbre. La maturité complète est atteinte lorsque le développement du produit est terminé et ne se développe plus (étape 1 du graphique).
- Il est suivi du processus de maturation (étape 2). Les fruits climatériques peuvent mûrir après avoir été cueillis. Cela facilite le transport et le stockage. Des exemples sont les tomates, les pommes, les abricots, les pêches, les poires, les prunes, les mangues et bien sûr les bananes. Les fruits non climatériques tels que les poivrons et les agrumes ne peuvent mûrir que sur la plante. Le degré de maturité s'appelle la maturité commerciale et il est déterminé par le marché.

- Le temps de récolte est donc fonction de la distance au marché. Les changements de couleur sont les symptômes externes les plus apparents de la maturation. Ils sont le résultat de la dégradation de la chlorophylle (disparition de la couleur verte) et de la synthèse de pigments spécifiques. Dans le cas de certaines cultures (ail, oignons, pommes de terre, patates douces et autres racines), on procède au séchage en enlevant les feuilles et en s'asséchant à l'ombre dans le champ ou sous des abris.
- La dernière étape est lorsque le produit commence à se détériorer, il devient trop mûr et se gâte (étape 3). Ceci doit être évité avec des actions post-récolte. Pour les fruits frais climatériques, cela se fait par ex. en éliminant l'éthylène ("épuration") et en remplaçant l'oxygène par du dioxyde de carbone ou de l'azote. Ce dernier est effectué dans des chambres ultra-basses oxygène (ULO). Pour le stockage des fruits et légumes frais non-climatériques, un stockage à froid est appliqué.

1.3. ACTIONS POST-RECOLTE

En raison de leur caractère périssable, les fruits et les légumes sont généralement vendus immédiatement après la récolte au niveau du champ et expédiés directement par le biais des circuits de commercialisation, de manière à pouvoir atteindre les consommateurs aussi rapidement que possible. Les produits sont nettoyés et classés de manière à obtenir un meilleur prix sur le marché ou à être soumis à un processus industriel répondant aux demandes des consommateurs et prolongeant leur durée de conservation. Les légumes transformés de manière industrielle sont généralement conservés dans les 7 à 10 heures suivant la récolte. Ceci est beaucoup plus rapide qu'avec les produits frais, donc moins de détérioration aura eu lieu et plus de nutriments et de goût auront été préservés, à condition que la technologie appropriée soit utilisée.

La transformation comprend la production de concentrés, de jus de fruits, de purées, de fruits séchés, de conserves (confitures, gelée, marmelade, conserves, sauces, cornichons et chutneys) et de cuirs à fruits (pulpe de fruits séchés). Par exemple, environ 60% des fruits et légumes consommés chaque année aux États-Unis sont transformés en produits de consommation en conserve, congelés ou séchés, 50% au Japon, 40% en Europe occidentale et 25% en Europe orientale. Le reste est mangé frais.

1.4. CONSERVATION DES ALIMENTS

La préservation crée un environnement qui empêche les micro-organismes nuisibles (bactéries, virus, moisissures ou levures) de se multiplier, tout en conservant autant que possible le goût et la texture d'origine. Il y a trois étapes:

Les micro-organismes ont besoin de: 1. température ambiante, 2. eau, 3. oxygène et 4. environnement chimiquement neutre. Les micro-organismes meurent en dehors de cet environnement. Il existe 10 principes pour tuer les micro-organismes (étape 1) et les empêcher de réinfecter et de détériorer le produit (étapes 2 et 3).

Tableau 2. Liste des principes de conservation.

Preservation principles	1. Temperature	2. Moisture	3. Oxygen	4. Chemical	5. Radiation
1. Pasteurization	high				
2. Sterilization	high				
3. Refrigeration	low				
4. Freezing	low				
5. Drying		low			
6. Vacuum treatment			low		
7. Anti-microbial agents				high	
8. Submersion					
- Salinity				high	
- Sugar		low		high	
- Acidity				low pH	
- Base				high pH	
9. Ionizing radiation (UV)	·				high
10. Combination of these pri	nciples				

Aucune méthode n'est parfaitement fiable en tant que conservateur. Par exemple, des micro-organismes thermorésistants, tels que Clostridium botulinum (qui cause le botulisme), ne meurent pas à ébullition à 100 ° C, mais Clostridium meurt lorsque le pH est inférieur à 4,4. Autre exemple: si un fruit est correctement séché (<12% d'humidité), il peut se conserver longtemps, à condition qu'il ne soit pas en contact avec de l'eau ou de l'air humide, un emballage hermétique est donc recommandé. Ou encore, lors de la préparation de concombres, une combinaison d'acidité et de salinité préserve le produit, mais une fois ouverts, les micro-organismes risquent de rentrer et il est recommandé de conserver le pot au réfrigérateur.

Dans l'industrie de la restauration, 4 méthodes de conservation et d'emballage sont courantes:

- 1. <u>La mise en conserve</u> est une méthode dans laquelle les aliments sont transformés, remplis et scellés dans un récipient hermétique, puis traités thermiquement (pasteurisés ou stérilisés) et refroidis. Le processus a d'abord été développé comme une découverte militaire française. Les récipients habituels sont des pots, des bouteilles, des boîtes de conserve, des sachets, etc. en verre, PET ou aluminium. Pour des informations utiles sur la mise en conserve, voir http://ucanr.org/freepubs/docs/8072.pdf. Il en va de même pour la mise en bouteille de liquides.
- 2. <u>Le conditionnement aseptique</u> est une méthode dans laquelle les aliments sont traités, traités thermiquement, refroidis, puis remplis et scellés sous vide dans un récipient hermétique (remplissage à froid). Les conteneurs habituels sont des sacs en plastique multilignes ou des cartons (Tetrapak, Elopak, SIG). Par exemple. Lait UHT, ou jus.
- 3. <u>Les fruits et légumes IQF (surgelés individuellement)</u> sont conservés en surgélation. En IQF, le produit reste fluide tout en congelant rapidement dans un environnement de -50 ° C. Le noyau du produit atteindra -18º en 2-3 minutes. Avec IQF, la plupart des caractéristiques naturelles des fruits et légumes frais sont conservées. Les fruits et les légumes peuvent être congelés entiers ou en tranches de différentes tailles. Les produits IQF sont faciles à traiter car ils dégèlent rapidement et conviennent parfaitement au contrôle des portions.
- 4. <u>Le séchage</u> est une méthode dans laquelle les aliments sont transformés, après quoi 85 à 90% de l'eau est éliminée. L'eau est généralement éliminée par évaporation (séchage à l'air, au soleil, par fumage ou par aspiration) ou par lyophilisation, les aliments étant d'abord congelés, puis éliminés par sublimation.

Tableau 3. Aperçu des systèmes de traitement et des investissements nécessaires

LEVEL OF PROCESSING	SCALE	RM INTAKE	ТҮРЕ	FILLING	PASTEURIZA TION	INVESTME NT RANGE (USD)
		100-500				
Artisan	small	kg/hr	batch	by hand	autoclave	10,000
Semi-industrial	medium	2-5 t/hr	batch	capper	autoclave	50,000
Industrial medium-			continuou	filler /		_
scale	large	5-10 t/hr	S	capper	aseptic	500,000
Industrial large-			continuou	filler /		
scale	very large	10-20 t/hr	S	capper	aseptic	2,000,000

Tableau 4. Aperçu des catégories de produits dans le secteur des fruits et légumes

Nbr	F& V	Product category	Brix	Raw material grade	Prod. Use	Processing Level	Process	Preservation method	Storage	Weight	Packing material	Use
1	F	fresh fruit	5-25	1	whole	semi-	none	none/cooling	ULO, 6°C	10-25 KG	crates	FP
2	F	frozen fruit	5-25	1	whole	indus	IQF	deep freezing	-25°C	10-25 KG	lined box	IP
3	F	dried fruit	22-36	1/2	whole whole/slice	artisanal semi-	drying cutting,	drying	ambient	10-25 KG	crates	FP
4	F	fresh fruit mix, pre-packed	15-20	1/2	d	indus	mixing	cooling	7-8°C	200-1000 G	pet	FP
5	F	compotes	14-16	2	whole	artisanal	heat	pasteurized	ambient	1-3 LITER	jar	FP
6	F	preserves	68	2	whole	artisanal	heat	pasteurized	ambient	300-500 G	jar	FP
7	F	jams	62	3	pulped	artisanal	heat	pasteurized	ambient	300-500 G	jar	FP
8	F	syrup	54	3	pulped	artisanal semi-	heat	pasteurized	ambient	1-3 LITER 250-1500	jar	FP
9	F	juices	12-13	3	pulped	indus semi-	heat	pasteurized	ambient	ML	carton, pet, jar	FP
10	F	puree, single-strength puree, double, triple-strength,	12	3	pulped	indus	heat	pasteurized	ambient	1-3 LITER	jar aseptic bag in	FP
11	F	aseptic	24	3	pulped	industrial	heat	aseptic	ambient	25-250 KG	drum aseptic bag in	IP
12	F	concentrate, aseptic	70	3	pulped whole/slice	industrial semi-	heat	aseptic	ambient	250 KG	drum aseptic bag in	IP
13	F	fruit filling	54	2/3	d	indus	heat	pasteurized	ambient	25-250 KG	drum	IP
14	V	fresh vegetables		1	whole	semi-	none	none/cooling	ULO, 6°C	10-25 KG	crates	FP
15	V	frozen vegetables		1	whole whole/slice	indus semi-	IQF	deep freezing	-25°C	10-25 KG	lined box	IP
16	V	canned vegetables		1	d whole/slice	indus	heat	pasteurized	ambient	200-1000 G	jar	FP
17	V	marinades, pickles fresh vegetables mix, pre-		1	d whole/slice	artisanal semi-	heat cutting,	pasteurized	ambient	200-1000 G	jar	FP
18	V	packed		1/2	d	indus	mixing	cooling	7-8°C	200-1000 G	crates	FP
19	V	dried vegetables		1/3	whole	artisanal	drying	drying	ambient	10-25 KG	crates	FP

Nbr	F& V	Product category	Brix	Raw material grade	Prod. Use	Processing Level	Process	Preservation method	Storage	Weight	Packing material	Use
					whole/pulp							
20	V	vegetable preserves		2	ed	artisanal	heat	pasteurized	ambient	200-1000 G	jar	FP
21	V	fresh tomato	4-6	1	whole	semi-	none	none/cooling	ULO, 6ºC	10-25 KG	crates	FP
22	V	sauces, tomato ketchup	18-25	2/3	pulped	indus semi-	heat	pasteurized	ambient	200-1000 G	jar	FP
23	V	tomato puree, paste	18-25	2/3	pulped	indus	heat	pasteurized	ambient	200-1000 G	jar aseptic bag in	FP
24	V	tomato paste, aseptic	25-36	2/3	pulped	industrial	heat	aseptic	ambient	250 KG	drum	IP
Note												
S	F = 1	FRUIT (SEED, STONE), BERRIES		1 = NO DE	FECTS, FRESH	MARKET QUAI	LITY		Intermedi	ate products nee	ed additional processi	ing = IP
	V =	FRUIT, LEAVES, STEMS, ROOTS			DEFECTS, FRE					Finished pro	duct, ready to consun	ne = FP

Tableau 5. Ratios de transformation de certains fruits par catégorie de produit

SN	Fruit	Product category	Use	PR	Nr	Fruit	Product category	Use	PR
1	Apple	Frozen small	IP	1.89	30	Pear	Frozen small	IP	n.a.
2	Apple	Puree	IP	1.28	31	Pear	Puree	FP	n.a.
3	Apple	Juice	FP	1.00	32	Peppers	Frozen split	IP	1.25
4	Apricot	Frozen half	IP	1.22	33	Potato	Frozen split	IP	1.43
5	Apricot	Frozen small	IP	1.35	34	Pumpkin	Preserves	FP	1.11
6	Apricot	Ice cream fruit preparation	IP	0.67	35	Quince	Preserves	FP	0.83
7	Apricot	Juice	FP	0.67	36	Raspberry	Frozen	IP	1.18
8	Apricot	Preserves	FP	0.50	37	Raspberry	Ice cream fruit preparation	IP	0.59
9	Apricot	Yoghurt fruit preparation	IP	0.67	38	Raspberry	Juice	FP	0.71
10	Bamia	Frozen split	IP	1.20	39	Raspberry	Preserves	FP	0.50
11	Beans	Frozen	IP	1.20	40	Raspberry	Yoghurt fruit preparation	IP	n.a.
12	Beans	Preserves	FP	n.a.	41	Rose leaves	Preserves	FP	0.12
13	Black salsify	Frozen	IP	1.28	42	Sour cherry	Frozen	IP	1.19
14	Blackberry	Frozen	IP	1.18	43	Sour cherry	Frozen destoned	IP	1.59
15	Blackberry	Preserves	FP	0.45	44	Sour cherry	Ice cream fruit preparation	IP	0.67
16	Cauliflower	Frozen split	IP	1.43	45	Sour cherry	Juice	FP	0.80
17	Cherry sweet	Preserves	FP	0.80	46	Sour cherry	Preserves	FP	0.80
18	Cornelian cherry	Preserves	FP	0.50	47	Sour cherry	Yoghurt fruit preparation	IP	0.67
19	Currant	Frozen	IP	n.a.	48	Spinach	Frozen	IP	1.85
20	Egg plant	Frozen split	IP	1.20	49	Strawberry	Frozen	IP	1.37
21	Fig	Preserves	FP	0.59	50	Strawberry	Ice cream fruit preparation	IP	0.56
22	Mandak	Frozen	IP	1.22	51	Strawberry	Juice	FP	0.59
23	Mulberry	Preserves	FP	0.50	52	Strawberry	Preserves	FP	0.56
24	Peach	Frozen small	IP	1.85	53	Strawberry	Yoghurt fruit preparation	IP	0.56
25	Peach	Frozen split	IP	1.35	54	Tomato	Frozen split	IP	1.14
26	Peach	Ice cream fruit preparation	IP	0.71	55	Tomato	Paste 25Bx	IP	6.50
27	Peach	Juice	FP	0.80	56	Tomato	Sundried	FP	18-20
28	Peach	Preserves	FF	0.80	57	Walnut	Preserves	FP	0.67
29	Peach	Yoghurt fruit preparation	IP	0.71					

2. Cigar Box et analyse des risques

La boîte à cigares est un outil Excel simple permettant un calcul rapide mais concis de la rentabilité d'une seule SKU ou de tout un portefeuille de produits qu'une usine souhaite produire. CB1 utilise quatre variables: prix de vente, coût variable, coût fixe et quantité.

Une compréhension approfondie de ces paramètres critiques est indispensable, ainsi que des repères de l'industrie, adaptés aux niveaux de technologie de transformation dominants dans la région: artisanal, semi-industriel, industriel.

Exemple tiré de la transformation de pommes en concentré de jus de pomme (AJC): dans un atelier artisanal, les pommes sont pressées à l'aide de presses à roue et nécessitent 11 kg de fruits crus pour 1 kg de concentré. Une meilleure méthode consiste à utiliser une presse à bande qui a plus de puissance, un rendement plus élevé et un rapport de transformation plus bas: seulement 8 kg de pommes sont nécessaires. La méthode la plus avancée consiste à ajouter des enzymes avant le pressage. Les enzymes aident à briser les parois cellulaires et même la dernière goutte de jus est extraite de la pomme: seulement 6 kg de pommes sont nécessaires pour un kg de AJC.

La technologie la plus avancée (presse à courroie + enzymes) se traduit par plus de AJC par tonne de pommes et un prix de revient inférieur. L'effet combiné donne presque trois fois plus de contribution de la même quantité de pommes achetées aux vergers.

Tableau 6. Importance de la technologie pour la rentibilité

Item	artisan	semi-industrial	industrial
Processing ratio for apples → AJC	11 kg/kg	8 kg/kg	6 kg/kg
AJC output from 1000 ton of apples	91 ton	125 ton	167 ton
VC1, if apple price is \$50 per ton	\$550	\$400	\$300
Other VCs	\$120	\$150	\$250
VC per ton	\$770	\$550	\$550
P(EXW) per ton	\$1,200	\$1,200	\$1,200
Margin per ton	\$430	\$650	\$650
Contribution	\$39,130	\$81,250	\$108,550
Index	100	207	278

La boîte à cigares calcule quatre paramètres de risque : 1. la marge en pourcentage des ventes ; 2. Quantité de ventes équilibrée et déduite de cette vente, 3. Quantité de matière première nécessaire à l'équilibre et 4. Utilisation de la capacité.

1. **Marge**. La marge doit généralement être supérieure à 30%. Cela est nécessaire en tant que tampon contre les fluctuations de prix des matières premières ou des produits finis.

Tableau 7. Marge % et niveaux de risques

Margin %	Level	Comment
<15%	Very risky	Only acceptable when the production process parameters and all prices are fully under control.
15-25%	Risky	Only acceptable if production and price fluctuations are within 5-10% range.
25-35%	Normal	nactactions are within 3 10% range.
35-45%	Robust	
>45%	Very robust	

- 2. **Seuil de rentabilité basé sur le volume des ventes**. Le volume de vente au seuil de rentabilité est la quantité de vente minimale que les propriétaires doivent justifier ou garantir avec des contrats de vente.
- 3. Seuil de rentabilité basé sur la quantité de matière première. La quantité de matière première calculée en fonction du seuil de rentabilité est la disponibilité minimale de matière première que les propriétaires justifient des marchés au comptant ou de la fourniture par le biais de l'agriculture contractuelle.
- 4. **Capacité d'utilisation**. Une faible utilisation de la capacité se traduit par une valeur de VC et un FC plus élevé par tonne produite. En règle générale, une utilisation de capacité supérieure de 10% donne une contribution supérieure de 35%.

Pour permettre au personnel de l'ITC de se former à l'utilisation de la boîte à cigares, chaque chapitre fournit un exemple d'industrie de transformation sur un marché émergent. L'outil Boîte à cigares a été utilisé dans de nombreuses entreprises et voici un résumé des leçons apprises au cours des 15 dernières années.

2.1. P. PRIX DE VENTE

Le prix de vente est exprimé en valeur avec une devise spécifique par unité et une condition de livraison. Le prix de vente doit être hors TVA.

- Prix de l'AJC = 900 USD par tonne de C & F New York.
- Prix de la farine = 8 000 nairas par sac de minoterie EXW de 50 kg à Lagos.
- Prix de la mangue = 53 FCFA par kg hors ferme Kindia.

2.2. VC4. COUT DE LIVRAISON VARIABLE

Les conditions de livraison sont normalisées INCO. Tous les frais engagés par le vendeur pour livrer les marchandises sont résumés dans VC4 Coût de la livraison. La boîte à cigares utilise le prix EXW hors TVA, les commissions de transport et de vente. Par conséquent: P (EXW) = P (C & F) - VC4.

Un avertissement est justifié. Lorsque des droits d'importation et d'exportation sont applicables, de nombreux exportateurs et importateurs acceptent de manière informelle de sous-facturer et paient la différence d'une autre manière: en espèces ou sur un compte offshore.

• Leçon 1: vérifiez toujours les contrats de vente sous-jacents et vérifiez comment les différences de conditions de vente sont réglées.

2.3. COUTS VARIABLES DE PRODUCTION

Les coûts variables (CV) fluctuent avec le volume produit. La boîte à cigares distingue trois coûts variables : VC1 = coût de la matière première et des ingrédients ; VC2 = coût de transformation des matières premières en un produit vendable et VC3 = coût d'emballage. Les pourcentages de VC1, VC2 et VC3 dans le prix de revient total du produit sont des critères d'efficacité utiles.

2.3.1. VC1

VC1 dépend du prix saisonnier de la principale matière première, de la qualité utilisée et du taux de transformation. Le rapport de traitement dépend encore une fois des facteurs suivants : a) les pertes de noyaux et de pelures spécifiques aux fruits, b) la qualité du produit (qualité inférieure, plus de pertes, PN supérieur) et c) le produit final (les concentrés nécessitent plus de matière première).

- Leçon 2 : les prix des matières premières fluctuant généralement fortement au cours de la saison et d'une année à l'autre, il est essentiel de planifier soigneusement les achats.
- Leçon 3 : les acheteurs de fruits doivent tenir compte du taux de transformation (PR) lors de la passation d'une offre d'achat et ajuster les prix en conséquence.

Supposons que le prix de la pomme soit de 50 dollars la tonne et que la qualité soit telle qu'un rapport de traitement de 8 kg / kg puisse être atteint. Le VC1 résultant est alors égal à 8*50 = 400 prices par tonne. Si une meilleure qualité peut être achetée avec un PR inférieur, le transformateur peut alors se permettre de payer un prix plus élevé. Voir exemple dans le tableau ci-dessous.

Tableau 8. Calcul du prix de partité

Item	artisan	semi-industrial	industrial
Processing ratio for apples → AJC	8 kg/kg	7 kg/kg	6 kg/kg
VC1, if apple price is \$50 per ton	\$400	\$350	\$300
Parity price to obtain same VC1	\$50	\$57	\$66

2.3.2. VC2

VC2 comprend le coût de la vapeur, de l'éau, de l'électricité et de la main d'œuvre variable ; traditionnellement moins cher sur les marchés émergents. La récente sensibilisation à l'environnement et la hausse des prix de l'énergie ont entraîné un changement de comportement : isolation des autoclaves, recyclage de l'eau chaude, utilisation de l'énergie solaire et éolienne. Les entreprises ayant des activités d'économie d'énergie efficaces seront plus compétitives.

• Leçon 4 : Le remplacement des anciens équipements par des équipements nouveaux et plus efficaces n'entraîne pas automatiquement une réduction des coûts. Le comportement des travailleurs doit aussi changer. Cela nécessite un entraînement et une démonstration, ainsi qu'un suivi et des poussées constants. Ce n'est que cela conduira à de réels changements de comportement et à des économies.

2.3.3. VC3

VC3 représente le coût des matériaux d'emballage primaires ('jar, cap and label'), secondaires ('cartons, étiquettes, rubans adhésifs') et tertiaires ('caisses, palettes, pellicules rétractables').

2.4. COUTS FIXES

Les coûts fixes (FC) ne sont pas influencés par la quantité produite. Ils doivent être payés même si la production est nulle. La boîte à cigares distingue : FC1 = amortissement ; FC2 = coût du capital ; FC3 = Frais généraux et FC4 = Coût des ventes et du marketing.

• Leçon 5: Les FC1 et FC3 sont systématiquement sous-estimés et doivent être ajustés pour inclure les investissements futurs et un salaire réaliste pour les propriétaires et la direction.

2.5. QUANTITE VENDUE

Le volume des ventes est le paramètre le plus difficile à prévoir et est systématiquement surestimé lors de la planification. Mon expérience des 15 dernières années l'a prouvé. Une des raisons est que les hypothèses de vente sont rarement élaborées en détail. Par exemple. Les ventes sur un marché local peuvent être quantifiées par le nombre de points de vente où les produits seront disponibles, multiplié par la surface de stockage de ces points de vente, multiplié par le temps de

rotation des rayons, à vérifier avec le nombre de visiteurs et leurs achats comportement pendant la journée. Les ventes à l'exportation peuvent être quantifiées par le nombre de clients, la taille moyenne des commandes et la fréquence des commandes au cours de l'année.

• Leçon 6 : vérifiez toujours toutes les hypothèses de vente.

2.6. QUANTITE PRODUITE

Dans l'industrie de transformation, une autre raison importante de la difficulté à prévoir la quantité vendue est la difficulté à prévoir la quantité de matière première qui sera traitée. Les raisons sont les suivantes : mauvaise planification de l'approvisionnement en matières premières ; manque de fonds de roulement (opportun); mauvaises récoltes en raison du manque d'eau d'irrigation, d'intrants, de tracteurs, de gestion de l'exploitation... Encore une fois, les hypothèses d'achat doivent être élaborées en détail : dans combien de régions puis-je acheter, chez combien d'agriculteurs et quels volumes ? Quand vont-ils livrer ? Existe-t-il un itinéraire et des moyens de transport suffisants ?

Leçon 7 : vérifiez toujours toutes les hypothèses d'achat de matières premières.

Parfois, les entreprises de transformation tentent de surmonter l'incertitude liée aux matières premières en pratiquant l'agriculture sous contrat sur des terres ouvertes ou dans des serres. Mais cela ne fonctionne pas bien lorsque les contrats ne sont pas honorés et difficile à appliquer légalement. Le prix est la pierre d'achoppement. Après une grosse récolte, le prix baisse et les transformateurs ont tendance à acheter moins cher ailleurs ; quand la récolte est serrée, les agriculteurs essaient de se retirer et vendent plus cher ailleurs. Un bon contrat offre un prix plancher fixe auquel les agriculteurs doivent vendre le volume nécessaire pour rembourser les acomptes reçus. Un prix de marché variable est convenu pour des volumes supplémentaires si les partenaires le souhaitent.

• Leçon 8 : il ne faut pas sous-estimer l'importance de l'agriculture contractuelle professionnelle. Les hypothèses de production sous-jacentes doivent être soigneusement vérifiées.

Et parfois, les entreprises de transformation essaient de cultiver leurs propres fruits et légumes. Très souvent, cela crée également des problèmes. Tout d'abord, les investissements supplémentaires et les efforts de gestion risquent de devenir trop pesants, en particulier pour les petites entreprises. Mais il y a un autre problème, en particulier dans la culture fruitière. La plupart des transformateurs n'utilisent que les faibles qualités de fruits pour lesquelles un prix modique peut être payé. Cependant, un verger produira non seulement de faibles qualités (en fait, de préférence, pas, car les exploitations doivent être un centre de profit à part entière), mais également des qualités plus élevées, offrant des prix plus élevés, que l'usine ne peut se permettre.

• Leçon 9 : il ne faut pas surestimer l'importance de la culture fruitière. Les hypothèses de production sous-jacentes doivent être soigneusement vérifiées.

3. Information sur la catégorie de produit

L'évaluation des opportunités dans l'agroalimentaire nécessite une connaissance spécifique de nombreux produits différents. Il n'est pas rare qu'une société de fruits et légumes transforme 40 types de fruits, de légumes, de baies et d'herbes en une centaine de SKU différentes, par exemple. Néanmoins, il est possible de résumer les problèmes clés en abordant six catégories générales de produits :

- 1. Concentrés et purées de jus de fruits ;
- 2. Jus, nectars et boissons;
- 3. Confitures, sirops et compotes;
- 4. Conserves de légumes
- 5. Fruits et légumes surgelés

3.1. CONCENTRES ET PUREES DE JUS DE FRUITS

3.1.1. Produit.

Le jus de fruit est obtenu en extrayant le jus cellulaire d'un seul fruit. Toutes les graines, les pierres, la peau et les parois intercellulaires sont enlevés.

- L'expression « teneur unique » désigne un jus ayant le même niveau de sucre que le fruit original. Il a une courte durée de vie et doit être emballé de manière aseptique ou congelé.
- Pour réduire les coûts de transport, le jus mono-force est concentré en évaporant l'eau du jus. Au cours de l'évaporation, le taux de sucre augmente de 14% à 28% (double) ou 42% (triple). Ceci est fait pour tous les fruits et les baies. Le terme « concentré » est utilisé pour les fruits qui donnent des jus clairs, sans particules : jus de pomme, concentré de cerise. Les concentrés ont un Brix élevé 60-70.
- Le terme « purée » est utilisé pour les types de fruits qui ne donnent pas de jus clairs, contenant de la pulpe de fruit : par exemple : Purée de mangue, purée de pêche. Quand une purée simple est concentrée, les termes double force ou triple force sont utilisés.

3.1.2. Matière première.

Les concentrés et les purées sont fabriqués à partir de fruits qui ne peuvent pas être vendus sur le marché du frais en raison de dommages ou de restes. Les fruits ont des taux de sucre naturels, qui diffèrent d'une variété à l'autre, mais qui augmentent jusqu'à maturité.

Mangue (12-18 Brix);

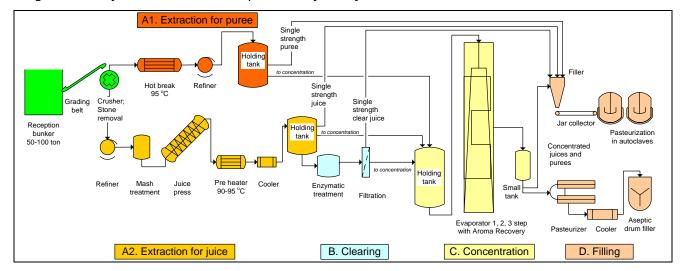
- Pêche (9-18 Brix);
- Cerise (17-22 Brix);
- Apple (11-13 Brix),
- Tomate (4-6 Brix).

Plus le Brix est élevé, plus le fruit a de la valeur pour le transformateur. La valeur des pommes est également influencée par son acidité. L'AJC chinois est bon marché en raison de sa faible acidité (0,8-2%); pour le marché européen, il doit être mélangé avec un AJC plus coûteux, à haute acidité (4-5%), par exemple de Pologne.

Tableau 9. Repères de rendement

	Fruit	actual yield (not irrigated, low maintenance, low tree density)	medium yield (irrigated, proper maintenance, low tree density	high yield (irrigated, good management, high tree density)
1	Apple/pear	4-9 ton/ha	15-25 ton/ha	30-80 ton/ha
2	Mango/peach	2-4 ton/ha	5-8 ton/ha	9-16 ton/ha
3	Cherry	3-8 ton/ha	10-15 ton/ha	20-30 ton/ha

3.1.3. Ratio de traitement.


Dépend de la concentration souhaitée. Plus la teneur en sucre (mesurée en Brix) du fruit est élevée, plus le rapport de transformation est faible, donc plus le prix de revient est bas. Exemple : pour produire 1 kg d'AJC 70 Brix, avec des pommes de 12 Brix, il faut 70/12 = 5,8 kg de jus de pomme, ou 7 à 8 kg de pommes crues. Ou bien, pour produire 1 kg de purée de mangue double force 28 Brix à partir de mangues crues de 14 Brix, il faut 28/14 = 2 kg de purée de mangue, ou 2,8 kg de mangue crue, dont 0,8 kg est le gaspillage de peau et de noyaux.

3.1.4. Processus de production.

Pour produire des purées, le fruit doit être mis en pâte uniquement (après pelage et destination), mais un équipement de pressage lourd est nécessaire pour produire du jus. Après la réduction en pâte ou le pressage, le jus / purée intermédiaire est évaporé sous vide jusqu'à la concentration souhaitée en Brix. Pour produire des jus clairs, deux traitements supplémentaires doivent être effectués sur le produit trouble, à savoir un traitement aux enzymes et une filtration du produit final. Les installations modernes récupèrent des arômes qui peuvent être restitués dans le produit.

Diagramme de flux 1. Concentrés et purées de jus de fruits

3.1.5. Emballage.

Les concentrés et les purées sont des produits intermédiaires à usage industriel et sont donc conditionnés dans des sacs aseptiques de 15 à 200 litres. De grands conteneurs sont également utilisés, transportant jusqu'à 1000 litres.

3.1.6. Description de la qualité.

Le jus de pomme clair doit être doré, sans impuretés (couleur = 60-70 NTU), avec un Brix standard d'environ 70%. Trois niveaux d'acidité : faible = 0,8-2%; moyen = 2-4%; élevé = 5-7%. La purée de pêche et de mangue doit avoir la couleur et l'arôme d'origine du fruit; pas de déviations, pas d'impuretés; et le standard Brix. Par exemple. la purée de mangue double force a 28 Brix.

3.1.7. Problèmes de qualité.

- 1. Pas clair> 70 NTU = mauvaise filtration;
- 2. Odeur de mauvais goût / yaourt = présence de bactéries lactiques en raison de la longue conservation des fruits avant leur transformation;
- 3. Trop liquide = pas assez de concentration conduisant à un produit inférieur;
- 4. Arôme trop faible = mauvaise récupération de l'arôme;
- 5. Trop sombre = surchauffe lors de l'évaporation et / ou de la pasteurisation;
- 6. Brunissement du produit final et changement de goût indésirable = perte de stérilité.

3.1.8. Problèmes de marketing.

Les concentrés et la purée sont des produits de base. Les prix sont généralement indiqués par C & F Rotterdam. Ces produits sont commercialisés par des sociétés spécialisées dans la livraison à temps aux fabricants de jus qui, à leur tour, produisent le jus final destiné au marché de la consommation. Les ventes de produits peuvent être financées avec des récépissés d'entrepôt avec un mandat. Les transformateurs peuvent expédier les marchandises à Rotterdam, par exemple, les stocker et recevoir 50 à 80% de la valeur avant la conclusion de la vente finale.

3.1.9. Repères de Cigar Box. Jus De Pomme Concentré

- **Description**: 70Bx, sacs aseptiques de 200 litres dans des fûts en acier
- Fourchette de prix: 600 \$ 1400 \$ C & F Rotterdam
- Coûts variables: VC = 611 \$ (84% de TC); VC1 = 75%; VC2 = 10%; VC3 = 15%.
- Coûts fixes: 446 000 FC \$; FC1 = 31%; FC2 = 15%; FC3 = 54%; FC4 = négligeable.
- **seuil de rentabilité** : min. volume des ventes = 2 770 tonnes ; min. matière première = 30 400 tonnes.
- Rentabilité: AJC confère au processeur une rentabilité faible à modérée.
 L'utilisation de la capacité (saisonnière) doit être supérieure à 75%. Rentabilité (2011) pour 3 800 tonnes AJC à partir de 38 000 tonnes de pommes = 5 à 9%.
- Sensibilité: marge = 21%. Risqué: comme le ratio de transformation est très élevé, le prix des pommes est crucial. Dans l'exemple de Cigar Box ci-dessous, une augmentation de 12% du prix des pommes réduira le bénéfice à zéro. D'où l'importance des vergers bien irrigués et bien entretenus à proximité de l'usine, de préférence avec des variétés de pommes à acidité moyenne à élevée.

Tableau 10. CB1 Jus de pomme concentrée.

	USD		USD
	per ton		per year
Price (DDP Moscow)	1,200	Total Revenue	2,933,600
Import duties, 16%	192	Total Cost	2,768,144
VC4 Transport, sales commission 3%	236	Profit Before Tax	165,456
Price (EXW)	772	Profit %	6%
Price (RM, delivered factory)	45	Asset value	1,400,000
Processing ratio	8.00	Depreciation %	10.0%
Raw Material cost	360 59%	FC1	140,000 31%
Other ingredients	100 16%		
VC1	460 75%	Debt (40% of Asset value)	560,000
		Interest rate	12%
Production cost per hour (steam, electricity)	145	FC2	67,200 15%
Production quantity per hour	2.5		
VC2	58 9%	Number of FTE employed	50
		Salaries permanent staff incl. social taxes	175,000 39%
		Other overhead, repairs, maintenance	64,000 14%
Cost of packing (aseptic bag + drum)	20.2	FC3	239,000 54%
Number of packs per ton	4.5		
VC3	92 15%	FC	446,200 100%
		FC % attributed to product	100.0%
Finished Goods losses %	0.2%		
VC	611 100%	FC (attributed to product)	446,200
Margin	161	Quantity sold g (ton)	3,800
Margin %	21%	Contribution	611,656
ivial gill 70	21/0	Contribution	011,030
		Break even quantity (sales)	2,772
FC / q	117 16%	Break even quantity (raw material)	22,177
TC / q	728 100%	Output capacity per hour in ton	2.5
• •		Operating hours per day	22
Profit / q	44	Working days per year	90
• •		Max. output capacity per year	4,950
		Capacity utilization %	77%

3.1.10. Repères de Cigar Box. Purée de mangue

- Description: 28 Brix dans des sacs aseptiques de 200 kg dans des fûts en acier
- Échelle des prix. 800 \$ 1400 \$ C & F Rotterdam
- Coûts variables. VC = 392 \$ (79% du TC); VC1 = 72%; VC2 = 6%; VC3 = 22%.
- Coûts fixes. FC = 425 000 \$ (imputation à 50%); FC1 = 28%; FC2 = 23%; FC3 = 49%
- **Seuil de rentabilité**. Volume min. des ventes = 1 000 tonnes ; min. matière première = 1 700 tonnes.
- Rentabilité. La purée de mangue confère une rentabilité modérée au transformateur. Rentabilité (2011) pour 5700 tonnes de mangue dans une purée de 2000 tonnes = 8%.
- Sensibilité. Marge = 28%. Normal : dans l'exemple ci-dessous, une augmentation de 15% du prix de la mangue brute, de 100 à 115 dollars la tonne, ramènera le bénéfice à zéro.

Tableau 11. CB1. Purée de manque

	USD		USD
	per ton		per year
Price (C&F Rotterdam)	1,000	Total Revenue	1,088,000
Import duties, 17.6%	176	Total Cost	1,001,519
VC4 Transport, sales commission 3%	280	Profit Before Tax	86,481
Price (EXW)	544	Profit %	8%
Price (RM, delivered factory)	100	Asset value	2,000,000
Processing ratio	2.86	Depreciation %	6.0%
Raw Material cost	286 72%	FC1	120,000 28%
Other ingredients	- 0%		
VC1	286 72%	Debt (40% of Asset value)	800,000
		Interest rate	12%
Production cost per hour (steam, electricity)	46	FC2	96,000 23%
Production quantity per hour	2.00		
VC2	23 6%	Number of FTE employed	15
		Salaries permanent staff incl. social taxes	65,000 15%
		Other overhead, repairs, maintenance	142,886 34%
Cost of packing (jar, cap)	17.00	FC3	207,886 49%
Number of jars per ton	5		
VC3	85 22%	FC	423,886 100%
		FC % attributed to product	50.0%
Finished Goods losses %	0.2%		
vc	395 100%	FC (attributed to product)	211,943
Margin	149	Quantity sold q (ton)	2,000
Margin %	27%	Contribution	298,424
iviaigiii /o	2170	Contribution	230,424
		Break even quantity (sales)	1,420
FC / q	106 21%	Break even quantity (raw material)	4,062
			,
TC / q	501 100%	Output capacity per hour in ton	2.0
		Operating hours per day	20
Profit / q	43	Working days per year	90
		Max. output capacity per year	3,600
		Capacity utilization %	56%

3.1.11. Principaux risques liés à un investissement.

Le marché des concentrés et de la purée est énorme ; lorsque le produit standard peut être produit, il peut toujours être vendu. Le principal risque est de garantir des

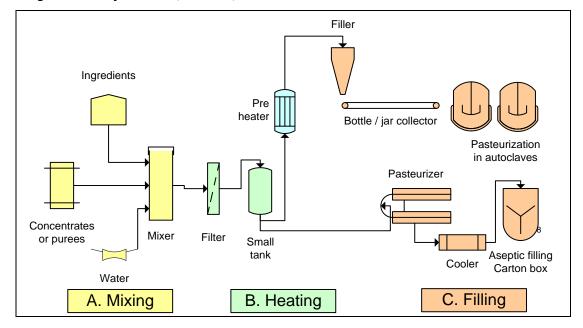
volumes suffisants de fruits à bas prix. Une meilleure gestion des vergers entraîne une réduction du pourcentage de déchets et des volumes de pommes industrielles. Pour le transformateur, le dilemme est que les investissements dans les (nouveaux) vergers ne sont abordables que pour les pommes du marché, pas pour les fruits industriels qui se vendent à des prix beaucoup plus bas.

3.2. JUS, NECTARS, BOISSONS

3.2.1. Produit.

Les jus et les nectars sont des produits à concentration unique (= 100% de jus de fruit) obtenus par extraction du jus cellulaire d'un fruit ou d'un mélange. Les nectars contiennent de la pulpe de fruit et les jus sont clairs, sans pulpe. Les deux peuvent être produits avec ou sans adjonction de sucre et d'autres ingrédients. Les boissons sont des mélanges de jus ou de nectar avec de l'eau. La teneur en fruits = moins de 100%. Les boissons habituelles contiennent de 15 à 35% de fruits. Le goût peut être renforcé avec des arômes naturels ou synthétiques, du sucre et d'autres ingrédients.

3.2.2. Matière première.


Purée de fruits \rightarrow nectar ; Jus de fruit concentré \rightarrow jus.

3.2.3. Processus de production.

La production commence par le mélange de purées et / ou de concentrés et l'ajout d'eau, tout en chauffant. Ensuite, d'autres ingrédients et arômes sont ajoutés. En fonction de la durée de conservation requise, le jus est pasteurisé et conditionné dans des conditions aseptiques (stériles) ou non aseptiques. Le produit stérile a une longue durée de vie (> 6-12 mois) tandis que le produit non stérile est destiné à la consommation immédiate (<3 mois). Il existe deux méthodes de remplissage : remplissage à chaud et remplissage à froid.

Diagramme de flux 2. Jus, nectars, boissons

3.2.4. Emballage.

Les produits non stériles sont conditionnés dans des bouteilles en verre ou en PET et les produits aseptiques (stériles) dans des cartons spéciaux (Tetrapak, Purepak, SIG). Les cartons et les bouteilles sont fournis dans la gamme de 150-2000 ml.

3.2.5. Description de la qualité.

Jus et nectars : le produit doit refléter le goût, l'odeur et la couleur d'origine des fruits. Boissons : le produit doit correspondre à la demande du consommateur ; aucun goût de fruit original n'est requis.

3.2.6. Problèmes de qualité.

Récipients de gonflage / explosion = formation de gaz pendant le stockage = emballage inapproprié. Si un système de renvoi des bouteilles est utilisé, il est important que les bouteilles recyclées soient correctement stérilisées avant leur utilisation et à nouveau stérilisées avec le produit à l'intérieur. Arôme faible / couleur différente = mauvaise recette, matière première bon marché. Mauvais arôme = adultération du fournisseur de matières premières.

3.2.7. Problèmes de marketing.

Les clients veulent un large assortiment, généralement> 10 arômes dans 2-3 tailles différentes ou 20-30 SKU. En plus des volumes plus importants de produits ordinaires (pomme, orange, abricot, pêche, cerise), des arômes plus exclusifs de fruits en petits volumes doivent être proposés (grenade, groseille, ananas, fruits rouges nationaux). Les récipients de jus nécessitent un étiquetage approprié avec une liste d'ingrédients et le contenu net, ainsi que le lieu où se trouve le fabricant. Les produits peuvent être étiquetés sous leur propre marque afin de récompenser le fabricant pour sa qualité

supérieure. Toutefois, il est plus courant de vendre sous une marque maison de l'importateur / grossiste ou du supermarché.

3.2.8. Repères de Cigar Box. Jus de fruits concentré

- Coûts Variables (1 litre): VC=\$500 (77% of TC); VC1=61%, VC2=14%, VC3=24% (150 ml): VC=\$580 (77% of TC(; VC1=53%, VC2=12%, VC3=35%
- Coûts Fixes : FC=\$1,000,000; FC1=20%; FC2=18%; FC3=63%
- **Seuil de rentabilité** : Volume min. ventes = 4,200 ton ; min. matière première = 3850 ton
- Rentabilité: Les jus de fruits apportent une grande rentabilité au transformateur. L'utilisation de la capacité (toute l'année) doit dépasser 70%. Rentabilité (2011) pour 10 000 tonnes à partir de 3 800 tonnes de concentrés = 17-20%.
- **Sensibilité:** marge = 33%; normal / souhaitable: des fluctuations de prix de 20% n'entraîneront pas de pertes.

Tableau 12. CB1. Jus de fruits

,	USD	n 1 liter carton brick, 6 in shrinkw	USD
	per ton		per year
Price (C&F)	985	Total Revenue	7,462,083
VAT 20%	164	Total Cost	6,037,398
VC4 Transport, sales commission 3%	75	Profit Before Tax	1,424,686
Price (EXW)	746	Profit %	19%
,,			
Price (RM, delivered factory)	600	Asset value	2,550,000
Processing ratio	0.38	Depreciation %	8.0%
Raw Material cost	231 46%	FC1	204,000 20%
Other ingredients	74 15%		•
VC1	305 61%	Debt (40% of Asset value)	1,020,000
		Interest rate	18%
Production cost per hour (steam, electricity)	216	FC2	183,600 18%
Production quantity per hour	3.0		
VC2	72 14%	Number of FTE employed	100
		Salaries permanent staff incl. social taxes	300,000 29%
		Other overhead, repairs, maintenance	350,000 34%
Cost of packing (brick, cap, shrink wrap)	0.73	FC3	650,000 <i>63%</i>
Number of carton boxes per ton	167		
VC3	122 24%	FC	1,037,600 100%
		FC % attributed to product	100.0%
Finished Goods losses %	0.2%		
vc	500 100%	FC (attributed to product)	1,037,600
Margin	246	Quantity sold q (ton)	10,000
Margin %	33%	Contribution	2,462,286
		Break even quantity (sales)	4.214
FC / q	104 17%	Break even quantity (raw material)	3,846
· · · · · ·	-0. 1//0		5,5.0
TC/q	604 100%	Output capacity per hour in ton	3.0
		Operating hours per day	16
Profit / q	142	Working days per year	300
		Max. output capacity per year	14,400
1		Capacity utilization %	69%

3.2.9. Principaux risques liés à l'investissement.

Entreprise de jus = marketing créatif. La fabrication n'est pas du tout difficile, surtout lors de l'utilisation de concentrés et de purées (importés). Les recommandations de recette des fournisseurs de concentrés sont courantes, mais cela rend le processeur

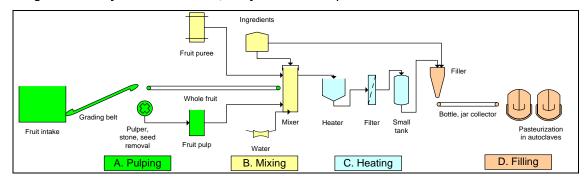
dépendant. Un assortiment adapté de recettes doit être utilisé pour répondre aux exigences des marchés locaux, car tous les marchés ont leurs propres goûts et préférences. Pour assurer leur indépendance, les propriétaires doivent investir dans le renforcement des capacités en marketing et dans le développement de produits, et pas seulement dans l'acier inoxydable!

3.3. CONSERVES, CONFITURES, SIROPS ET COMPOTES

3.3.1. Produit.

Les conserves désignent les fruits ou les légumes préparés pour la conservation à long terme, en utilisant de la pectine, du sucre ou du miel comme agent gélifiant et en ajoutant des ingrédients sucrés (dans les conserves de fruits) ou salés (dans des conserves de légumes), selon leur goût. La confiture est composée de 50% de fruits en pulpe et de 50% de sucre (60-70 Brix). Le sirop est un jus de fruits condensé et sucré (60-70 Brix). La compote est une boisson obtenue en extrayant des arômes de fruits entiers dans de l'eau, en ajoutant du sucre au goût (30-50 Brix).

3.3.2. Matière première.


La plupart des types de fruits frais, baies et légumes. Différentes qualités sont utilisées; voir le tableau 3 - Aperçu des catégories de produits dans le secteur des fruits et légumes.

3.3.3. Processus de production.

Les fruits frais ou précuits sont bouillis avec une solution de sucre jusqu'à ce que suffisamment d'eau soit évaporée pour donner un mélange. Pour les sirops, l'évaporation est moindre que pour les confitures. Pour les confitures, l'eau est évaporée jusqu'à ce qu'il ne reste qu'un tiers de l'eau. Les fruits à teneur élevée en pectine et en sucre commencent à se gélifier automatiquement au cours du processus, tandis que les autres fruits nécessitent davantage de sucre et de pectine. L'ajout de sucre est aussi une question de goût. Pour les sirops, les conserves et les compotes, moins d'eau s'évapore comme pour les confitures. Les conserves et compotes contiennent les fruits entiers et le sucre ajouté. Pour les sirops, le mélange initial est filtré pour éliminer les morceaux de fruits et obtenir un liquide lisse de viscosité plus élevée que le jus, une partie de l'eau étant évaporée et parfois additionnée de sucre. Lors de la cuisson à chaud des produits, les micro-organismes sont détruits et les produits sont remplis à chaud pour créer un vide naturel sous les capsules.

Diagramme de flux 3. Conserves, confitures et sirops

3.3.4. Emballage.

Les conserves, confitures, sirops et compotes sont traditionnellement conditionnés dans des pots en verre de 200 ml à 3000 ml, le plus souvent torsadés, bien que les pots de style soviétique de 1, 2 et 3 litres soient toujours utilisés. Les hôtels et les restaurants exigent des volumes plus importants emballés dans des pots et des boîtes de 1 à 5 litres. Les conteneurs nécessitent un étiquetage approprié avec une liste des ingrédients, le poids net et le contenu, ainsi que les coordonnées du fabricant.

3.3.5. Description de la qualité.

Le produit doit refléter la couleur et la saveur originales des fruits et être exempt d'impuretés.

3.3.6. Problèmes de qualité.

Goût caramel = température de traitement trop élevée. Arôme faible = température de traitement trop basse ou trop élevée, fruit de mauvaise qualité. Moules = mauvaise fermeture du bouchon, entraînant une perte de vide.

3.3.7. Problèmes de marketing.

Les clients veulent un large assortiment, généralement> 50 unités. En plus des volumes plus importants de produits ordinaires (abricot, pêche, cerise), des fruits plus exclusifs en petits volumes doivent être offerts (argousier, noix verte, pommes de montagne). Les produits peuvent être étiquetés sous leurs propres étiquettes afin de récompenser le fabricant pour sa qualité supérieure. Toutefois, il est plus courant de vendre sous une marque maison de l'importateur / grossiste ou du supermarché.

3.3.8. Repères de Cigar Box. Conserve de noyer vert bio.

- Coûts Variables: VC=\$1370 (84% of TC); VC1=58%, VC2=12%, VC3=30%
- Coûts Fixes: FC=\$742,000 (80% attribution); FC1=19%; FC2=17%; FC3=63%
- **Seuil de rentabilité :** Volume min. de ventes = 338 ton; min. matière première = 200 ton.
- Rentabilité: Très élévée, pourvu que le volume des ventes pour tous les SKUs soit bon.
- **Sensibilité:** marge = 62%; Très robuste.

Tableau 13. CB1. Noyer Vert Bio

0 - 0	USD		314 ml glass jar, 18 jars in carto	USD
	per ton			per year
Price (C&F)	4,980		Total Revenue	8,563,200
VAT 20%	830		Total Cost	4,027,981
VC4 Transport, sales commission 3%	582		Profit Before Tax	4,535,219
Price (EXW)	3,568		Profit %	53%
FIICE (LAW)	3,308		FIOR 70	33/0
Price (RM, delivered factory)	883		Asset value	2,250,000
Processing ratio	0.59		Depreciation %	8.0%
Raw Material cost	519 38		FC1	180,000 19%
Other ingredients	280 20	0%		,
VC1	799 58		Debt (40% of Asset value)	900,000
			Interest rate	18%
Production cost per hour (steam, electricity)	155		FC2	162,000 17%
Production quantity per hour	0.96			
VC2	162 12	2%	Number of FTE employed	100
			Salaries permanent staff incl. social taxes	300,000 32%
			Other overhead, repairs, maintenance	286,000 31%
Cost of packing (jar, label, cap, carton box)	2.92		FC3	586,000 <i>63%</i>
Number of carton boxes per ton	139			
VC3	405 30	0%	FC	928,000 100%
			FC % attributed to product	80.0%
Finished Goods losses %	0.2%			
VC	1,369 10	00%	FC (attributed to product)	742,400
Margin	2,199		Quantity sold q (ton)	2,400
Margin %	62%		Contribution	5,277,619
			Break even quantity (sales)	338
FC / q	309 18		Break even quantity (raw material)	199
- , -				
TC / q	1,678 10	00%	Output capacity per hour in ton	0.96
			Operating hours per day	22
Profit / q	1,890		Working days per year	170
			Max. output capacity per year	3,590
			Capacity utilization %	67%

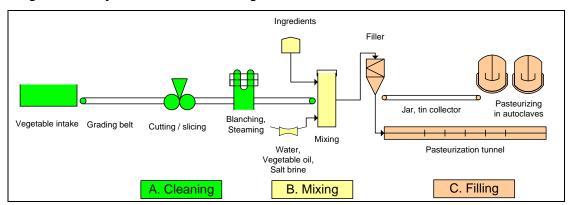
3.4. LEGUMES EN CONSERVE

3.4.1. Produit.

Les légumes industriels sont des légumes de faible volume et de grande valeur, cultivés dans des champs ouverts. Une fois traités, ils sont en conserve ou congelés. Les légumes en conserve peuvent être bouillis dans de l'eau, de la saumure salée, de l'huile végétale et / ou mélangés à d'autres légumes et ingrédients entiers ou en tranches. Les légumes en conserve se substituent aux légumes frais quand ils sont hors saison. En raison du traitement thermique, ils sont plus proches de la consommation et plus faciles à préparer et à consommer.

3.4.2. Matière première.

De préférence, seuls les légumes de première classe sont transformés (voir Tableau 3 - Aperçu des catégories de produits dans le secteur des fruits et légumes). Les produits



en conserve courants sont les haricots, les asperges, les haricots verts, les pois, le maïs (sucré), les carottes et les choux.

3.4.3. Processus de production.

La matière première est nettoyée, lavée et coupée, puis blanchie ou cuite à la vapeur. Puis conduit à la ligne de remplissage où ils sont remplis dans des conteneurs, scellés hermétiquement et pasteurisés. Après refroidissement, le conteneur est étiqueté.

Diagramme de flux 4. Conserves de légumes

3.4.4. Emballage.

Les légumes en conserve industriels (à réemballer ou à réutiliser ultérieurement) sont conditionnés dans des récipients de 1 à 5 litres. Les légumes de consommation sont emballés dans des pots en verre et des boîtes de 50-1000 ml.

3.4.5. Description de la qualité.

Le produit doit refléter la couleur et le goût originaux des légumes. Le produit ne doit pas avoir perdu son vide ni être trop cuit.

3.4.6. Problèmes de qualité.

Gonflement / explosion, moisissures, brunissement = mauvaise fermeture du bouchon, entraînant une perte de vide. Arôme faible = température de traitement trop basse ou trop élevée, légumes de mauvaise qualité

3.4.7. Problèmes de marketing.

Au fil des ans, la question de savoir si les légumes en conserve (et les légumes surgelés) sont meilleurs ou pires que les légumes frais a suscité la controverse. De manière générale, les rapports montrent que les légumes en conserve et surgelés sont nutritionnellement presque identiques aux légumes frais.

3.4.8. Repères de Cigar Box. Petits pois en conserve.

• Coûts Variables: VC=\$245 (91% of TC); VC1=71%, VC2=12%, VC3=16%

- Coûts Fixes: FC=\$490,000 (100% attribution); FC1=41%; FC2=37%; FC3=22%
- **Seuil de rentabilité :** Volume min. de ventes = 12,600 ton ; Matière première min. = 10,250 ton
- Rentabilité: Très faible, 3-7%. La capacité d'utilisation est la clé.
- **Sensibilité**: marge = 14%, Très risqué.

Tableau 14. CB1. Petit pois en conserve

	USD			USD	
	per ton			per year	
Price (C&F)	400		Total Revenue	5,666,667	
VAT 20%	67		Total Cost	5,391,450	
VC4 Transport, sales commission 3%	50		Profit Before Tax	275,217	
Price (EXW)	283	_	Profit %	5%	
		1			1
Price (RM, delivered factory)	190		Asset value	2,500,000	1
Processing ratio	0.80		Depreciation %	8.0%	_
Raw Material cost		62%	FC1	200,000	41%
Other ingredients		9%			1
VC1	175	71%	Debt (40% of Asset value)	1,000,000	1
		1	Interest rate	18%	-
Production cost per hour (steam, electricity)	120	1	FC2	180,000	37%
Production quantity per hour	4.00			-	1
VC2	30	12%	Number of FTE employed	20	1
			Salaries permanent staff incl. social taxes	60,000	12%
		-	Other overhead, repairs, maintenance	50,000	10%
Cost of packing (jar, label, cap, shrink wrap)	0.19		FC3	110,000	22%
Number of carton boxes per ton	208]			
VC3	40	16%	FC	490,000	100%
		_	FC % attributed to product	100.0%	
Finished Goods losses %	0.2%				
vc	245	100%	FC (attributed to product)	490,000	
Manuela	20		Overation and a (top)	20.000	1
Margin	38		Quantity sold q (ton)	20,000	J
Margin %	14%	•	Contribution	765,217	
			Break even quantity (sales)	12,807	
FC / q	25	9%	Break even quantity (raw material)	10,245	
-				•	
TC / q	270	100%	Output capacity per hour in ton	4.00	_
			Operating hours per day	22	
Profit / q	14		Working days per year	300	
			Max. output capacity per year	26,400	_
			Capacity utilization %	76%	

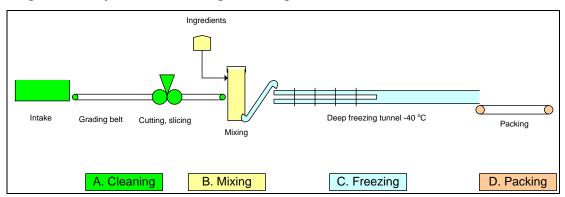
3.4.9. Principaux risques liés à l'investissement.

L'utilisation de la capacité et la maîtrise des coûts sont les clés de la rentabilité. La coopération entre les producteurs et les transformateurs est essentielle pour contrôler les coûts et garantir la disponibilité de grandes quantités et de bonnes qualités de légumes. Les transformateurs à grande échelle doivent gérer une gamme de produits qui garde leur capacité occupée. Le point mort et les volumes de matières premières correspondants doivent être garantis. Le développement d'une marque d'usine peut être très enrichissant : une augmentation de 5% du prix de vente peut entraîner une augmentation de 100% des bénéfices.

3.5. FRUITS ET LEGUMES SURGELES

3.5.1. Produit.

Les légumes et les fruits congelés sont légèrement transformés (non bouillis) et rapidement surgelés afin de conserver autant que possible les propriétés originales. Ils décongèlent rapidement et sont parfaits pour le contrôle des portions.


3.5.2. Matière première.

Pour les légumes, les produits de première qualité sont préférés (voir l'annexe B, tableau 3 - Aperçu des catégories de produits dans le secteur des fruits et légumes). Les légumes courants sont les haricots verts, les pois, le maïs (sucré), le brocoli, le chou-fleur et les épinards, ainsi que leurs mélanges. Les pommes de terre congelées sans pré-ébullition font également partie de cette catégorie. Les pommes de terre congelées pour les frites, etc. sont exclues. Ceux-ci relèvent de la catégorie 200410 du SH. Les fruits congelés courants sont tous les fruits rouges (généralement entiers), les pommes (tranches ou en cubes), les abricots / les pêches (en moitiés ou en tranches).

3.5.3. Processus de production.

La matière première est nettoyée, lavée et coupée, puis blanchie ou cuite à la vapeur. Puis conduit à la ligne de remplissage où ils sont remplis dans des conteneurs, scellés hermétiquement et pasteurisés. Après refroidissement, le conteneur est étiqueté.

Diagramme de flux 5. Fruits et légumes surgelés

3.5.4. Emballage.

Les fruits et les légumes industriels congelés (à réemballer ou à réutiliser ultérieurement) sont emballés dans des cartons doublés de plastique de 10 à 25 kg ou dans des fûts de 200 litres. Les produits de consommation sont emballés dans des boîtes en carton rectangulaires ou des sacs en plastique imprimés allant de 200 à 1 000 g. Les fruits surgelés sont parfois emballés dans des gobelets en plastique de 250-500 ml. Une petite cuillère est généralement fournie.

3.5.5. Description de la qualité.

Les fruits et les légumes doivent conserver leur identité d'origine en termes de forme, de couleur et d'arôme. Lorsqu'il est coupé en cubes ou en cubes, le fruit original doit être reconnu. Il ne devrait pas être écrasé, dépulpé ou cassé, cela abaisserait la note.

3.5.6. Problèmes de qualité.

Produit cassé = congélation lente, manipulation brutale, petites tailles = matière première bon marché, tailles inégales = mauvais classement.

3.5.7. Problèmes de marketing.

Au fil des ans, la question de savoir si les légumes surgelés sont meilleurs ou moins bons que les frais est controversée. De manière générale, les rapports montrent que les légumes surgelés ne sont pas très différents sur le plan nutritionnel des légumes frais.

Les <u>avantages</u> perçus sont :

- Identité, couleur et saveur accrues
- Faciles à transformer et souvent, ils sont un peu plus près de manger
- Excellente durée de vie (au moins 24 mois à -18º) et
- Disponibilité lorsque leur équivalent frais est hors saison.
- Dans de nombreux cas, ils sont moins chers que le produit frais.
- Plus hygiénique que frais, puisqu'ils sont déjà cuits.

Les <u>inconvénients</u> perçus sont les suivants :

- Après avoir été transformés, ils n'ont pas le même goût que les fruits et les légumes naturels.
- Préoccupations concernant la perte d'éléments nutritifs lors du traitement
- Leur utilisation dans les recettes est également plus limitée.

3.5.8. Les repères de Cigar Box. Mure Bio Congelé (IQF) :

- **Coûts Variables**: VC=\$1387 (78% of TC); VC1=75%, VC2=17%, VC3=7%
- **Coûts Fixes :** FC=\$466,000 (100% attribution) ; FC1=30%; FC2=27%; FC3=43%
- **Seuil de rentabilité :** Volume min. des ventes = 830 ton ; matière première min. = 1060 ton
- Rentabilité: Bonne, pourvue que le volume des ventes pour tous les SKUs soit bon.
- **Sensibilité**: marge = 29%; normal / souhaité.

Tableau 15. Mure Bio Congelé (IQF)

	USD			USD	
	per ton			per year	
Price (C&F)	2,446		Total Revenue	2,343,439	
Transport, sales commission 3%	323		Total Cost	2,133,765	
VC4 Transport, sales commission 3%	170		Profit Before Tax	209,674	
Price (EXW)	1953		Profit %	9%	
Price (RM, delivered factory)	820		Asset value	1,750,000	
Processing ratio	1.28		Depreciation %	8.0%	
Raw Material cost	1,049		FC1	140,000	30%
Other ingredients		0%			
VC1	1,049	75%	Debt (40% of Asset value)	700,000	
			Interest rate	18%	
Production cost per hour (labor, electricity)	144		FC2	126,000	27%
Production quantity per hour	0.60				
VC2	240	17%	Number of FTE employed	50	
			Salaries permanent staff incl. social taxes	150,000	
			Other overhead, repairs, maintenance	50,000	11%
Cost of packing (plastic, carton box, tape)	1.17		FC3	200,000	43%
Number of carton boxes per ton	83				
VC3	98	7%	FC	466,000	100%
			FC % attributed to product	100.0%	
Finished Goods losses %	0.2%				
vc	1,390	100%	FC (attributed to product)	466,000	
Margin	563		Quantity sold q (ton)	1,200	
Margin %	29%		Contribution	675,674	
ividigiii 76	2970		Contribution	0/3,0/4	
			Break even quantity (sales)	828	
FC / q	388	22%	Break even quantity (raw material)	1,059	
TC / q	1,778	100%	Output capacity per hour in ton	0.60	
, -,	_,	_55,5	Operating hours per day	22	
Profit / q	175		Working days per year	120	
, न	1/3		Max. output capacity per year	1,584	
			Capacity utilization %	76%	

3.5.9. Les repères de Cigar Box. Mélanges de maïs et de pois doux congelés :

- **Coûts Variables**: VC=\$582 (79% of TC); VC1=66%, VC2=17%, VC3=17%
- Coûts Fixes: FC=\$466,000 (100% attribution); FC1=30%; FC2=27%; FC3=43%
- **Seuil de rentabilité :** Volume min. de ventes = 2300 ton ; matière première min.= 3000 ton
- Rentabilité : faible, pourvu que le volume de ventes de tous les SKUs soit bon.
- **Sensibilité**: marge = 26%; normal / souhaité.

Tableau 16. Mélanges de maïs et de pois doux congelés

	USD	packed in PE bag of 500g, 10 bags	USD
	per ton		per year
Price (C&F)	1,000	Total Revenue	2,350,000
VAT 20%	167	Total Cost	2,212,754
VC4 Transport, sales commission 3%	50	Profit Before Tax	137,246
Price (EXW)	783	Profit %	6%
Price (RM, delivered factory)	280	Asset value	1,750,000
Processing ratio	1.30	Depreciation %	8.0%
Raw Material cost	364 63%	FC1	140,000 30%
Other ingredients	21 4%		
VC1	385 66%	Debt (40% of Asset value)	700,000
		Interest rate	18%
Production cost per hour (labor, electricity)	144	FC2	126,000 27%
Production quantity per hour	1.50		
VC2	96 17%	Number of FTE employed	50
		Salaries permanent staff incl. social taxes	150,000 32%
		Other overhead, repairs, maintenance	50,000 11%
Cost of packing (PE bag and carton)	0.50	FC3	200,000 43%
Number of carton boxes per ton	200		
VC3	100 17%	FC	466,000 100%
		FC % attributed to product	100.0%
Finished Goods losses %	0.2%		
VC	582 100%	FC (attributed to product)	466,000
Margin	201	Quantity sold q (ton)	3,000
Margin %	26%	Contribution	603,246
		Break even quantity (sales)	2,317
FC / q	155 21%		3,013
, 4	133 2170	break even quantity (raw material)	3,013
TC / q	738 1009	6 Output capacity per hour in ton	1.50
		Operating hours per day	22
Profit / q	46	Working days per year	120
		Max. output capacity per year	3,960
		Capacity utilization %	76%

FIN DU DOCUMENT